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Analysis of Multiple-Strip Discontinuity in a
Rectangular Waveguide
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Abstract —The paper considers the problem of an arbitrary number of
thin, transverse, and metallic strips located in the cross section of a
rectangular waveguide. The strips can either be inductive or capacitive and
are arbitrarily located. Equivalence theorem is utilized, in conjunction with
appropriate boundary conditions, to set up an integral equation which is
then solved using the method of moments. The method is applied to a
number of test problems and the numerical results show good agreement
with the available data.

I. INTRODUCTION

PARTICULARLY important problem in electro-

magnetic theory is the analysis of obstacles and
discontinuities in a waveguide. Several methods of solution
have been developed and some of these may be found in
standard texts [1], [2]. Although the rigorous analytical
techniques give an insight into the finer points of the
phenomena involved, the working engineer is generally
mterested only in the numerical results. Therefore, a recent
trend is to utilize numerical mode-matching and moment
methods, which has been made possible by the develop-
ment of powerful digital computers.

This paper considers the problem of a number of thin,
transverse, and metallic strips which are arbitrarily located
in the cross section of a rectangular waveguide. The related
problem of double apertures or double strips has been
analyzed by Lewin [2, chs. 6, 7] using the singular-integral
equation method. Chang and Khan [3] have used the
variational theory to study the problem of coupling be-
tween two inductive strips in a rectangular waveguide.
Recently, Auda and Harrington [4] have presented a mo-
ment procedure for the general problem of inductive ob-
stacles in a rectangular waveguide. In their method, each of
the posts is approximated by a finite number of current
carrying strips. The waveguide Green’s function is then
used to express the field produced by these currents. In
order to improve the convergence, they express the dy-
namic Green’s function in terms of the cotresponding
static Green’s function and the resulting integrals are
evaluated numerically. Although the method can, in princi-
ple, be extended to include the capacitive obstacles, the
analytical and numerical problems in that case are ex-
pected to increase further because the obstacle is no longer
uniform in the direction of electric lines of force.
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In this paper, we present an alternative moment proce-
dure which is straightforward and can be applied to the
problem of multiple strip discontinuities in a rectangular
waveguide. The method is based upon the generalized
network formulation for aperture problems [5] and can
handle both the inductive and capacitive strips of arbitrary
number and width.

II. FORMULATION

Fig. 1 shows the problem under study and defines the
coordinates and parameters used. Here, we consider p
perfectly conducting strips of widths wy,w,,- - -, w, located
at the plane z = 0. The strips are infinitesimally thin and
can be either inductive (Fig. 1(a)) or capacitive (Fig. 1(b)).
The waveguide is considered to be lossless and supports
only the dominant TE,, propagating mode. An electro-
magnetic source is assumed to be located in the region
z <.

As a first step, the equivalence theorem [1, sec. 1.7] is
utilized to divide the problem into two separate parts (Fig.
2). The apertures A;, 4,,---, A, are closed with electric
conductors and an equivalent surface magnetic current
+ M(x, y) is placed at z = 0~ in the region of apertures. It
is given by

M=3xE 1)
where E is the electric field in the apertures of the original
problem and 2 is the unit normal. In order to ensure the
continuity of electric field at z =0, a current — M(x, y) is
placed at z=0". The electromagnetic field in the region
z <0 (region 1) is now due to the impressed sources and
the current + M at z=0" while in the region z>0
(region 2), it is due to the current — M at z=0". In both
cases, the field is evaluated with the apertures short-cir-
cuited.

Enforcing the boundary condition that the transverse (to
z-axis) magnetic field is continuous across the apertures,
we obtain

HO(M)+2H*=H?(~ M) 2

on A

where

A=

t

4,

)

and U denotes the union operator. In (2), the transverse
magnetic field produced in region 1 by the current + M is
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Fig. 1. Geometry of the problem: (a) inductive strips, (b) capacitive
strips.
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Fig. 2. Equivalent problems: (a) model valid in the region z <90, (b)
model valid in the region z > 0.

denoted H®(M), that produced in region 2 by — M is
denoted HP(— M), and the incident field due to the
impressed sources is denoted H.™.

Using the linearity of H, operator and the fact that the
two regions are identical, (2) can be rewritten as

H(M)+H™=0 (4)

The operator equation (4) can be solved numerically
using the method of moments. More specifically, we define
a set of expansmn functions {M } and a set of testing
functions {W,} in A and express the current M by the
superposition

on A.

_ N
M=)V

X

)

697
where V) are the unknown complex coefficients.
Following the procedure outlined in [5], (4) can now be
reduced to matrix form

[Ylv=1 (6)
where
(Y] = [(= W B(M))] (7)
I= [(Wiaﬁtincﬂle (8)
V= [VJ]NXI ©)

Solution of the system of equations (6) determines the
equivalent magnetic current M,

A. Evaluation of Matrix Elements Y,

The transverse components of the fields produced by a
single expansion function + M, can be written in the
modal form as [1, sec. 5.6]

K
E(M)= % Gee, (10)
s=1
o K
H(M))=~ Y CYer i xe, (11)
=1

where K is the number of modes used to approximate the
fields, C;, are the modal amplitudes, €, are the normalized
modal vectors, y, are the modal propagation constants,
and Y, are the modal characteristic admittances.
Substituting (10) in (1) and making use of the ortho-
gonality of modal vectors, one can easily show that

Cy= [[ M2 xé,ds. (12)

An element of the matrix [Y] is now obtained in a
straightforward manner by combining (7) and (11) and is
given by

K
= L BYC, (13)
s=1
where the coefficients B, are given by (12) with M re-
placed by W.,.

B. Evaluation of Excitation Vector T

Assuming that only the dominant mode of unit ampli-
tude is incident at z =0, the transverse magnetic field in
the incident wave can be written as

H=Ye ™ 2xXe,
where the subscript o denotes the dominant mode.

Substituting (14) in (8), an element of excitation vector is
obtained as

(14)

I,=Y B,

i o~lo*

(15)

III. DETERMINATION OF THE EQUIVALENT CIRCUIT

From an engineering viewpoint, it is always desirable to
characterize a discontinuity by an electrical network con-
taining lumped elements. The class of discontinuities con-
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Fig. 3. The normalized susceptance of the symmetrical inductive di-

aphragm (a/A = 0.8).

sidered here can be represented simply by a normalized
shunt susceptance jB across a transmission line of unit
characteristic admittance. It is given by [1, sec. 8.2]

2T, 19)
+T (

4

jB=~—

oy

where I', is the reflection coefficient of the dominant
mode, evaluated at z = 0, and is given by

T,=-1+ Y, VC,. (17)

T[\’Jz

1

The junction can now be characterized by the scattering
matrix

S=[ T, 1+I‘o}_ (1)

1+T, T

g

IV. RESULTS AND DISCUSSION

The method presented has been applied to a number of
problems and the results compared with the available data.
A Galerkin procedure has been used with a rooftop func-
tion utilized for expansion as well as testing. Some of the
problems considered and the results obtained are shown in
Figs. 3-6. In all the cases, the moment procedure is found
to converge monotonically as shown in Fig. 7 for a capaci-
tive diaphragm.
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It is seen that for the cases of inductive and capacitive
diaphragms and the symmetrical inductive strip, the results
from the present method agree very well with the data
given in the Waveguide Handbook (WGHB) [6]. However,
for the case of two coupled-inductive strips, the moment
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Fig. 7. The convergence of the moment procedure for the symmetrical
capacitive diaphragm (b/A, =02, d /b= 10.2).

procedure predicts slightly higher values of susceptance
than those calculated by Chang and Khan [3]. This is
because they assume the current to be constant over the
strip-width, which is not strictly true even for narrow
strips. As a matter of fact, the difference is found to be as
large as 20 percent when the strips are near the narrow
walls (large rate of change of electric field), and reduces to
about 9 percent when they are near the center of the
waveguide.

Some general remarks regarding the numerical proce-
dure are in order here.

In the case of inductive strips, the discontinuity is uni-
form along the y-axis, and since the electromagnetic energy
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d/a=0.5).

is incident in the dominant TE,, mode, only TE,, , modes
are excited at z =0. Thus, the equivalent surface magnetic
current has only the x-component M*, which does not
vary with y. Consequently, it is the number of sections
along the x-axis that affect the convergence of the solution
and, moreover, only TE,,, modes need be included in the
summation of (13).

In the case of capacitive strips, on the other hand, the
discontinuity is nonuniform along the y-axis. Therefore, a
number of subsections must be used along the y-axis (Fig.
7) and both TE and TM modes must be included.

Further, the numerical solution to the matrix equation
(6) is found to exhibit the phenomenon of relative conver-
gence [7], [8]. Thus, the solution may converge to an
incorrect value if for a given number of expansion func-
tions, the number of modes used is-less than a certain
critical value K _. A convenient way to find the value of K_
is to plot the condition number [9, sec. 5.1] of the moment
matrix as shown in Fig. 8. It is seen that for a given
number of expansion functions, the condition number set-
tles around a minimum value which is obtained at K = K .
Thus, one should always choose K > K ..
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