
696 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO, 6, JUNE 1986

Analysis of Multiple-Strip Discontinuity in a
RectangularWaveguide

SACHENDRA N. SINHA, MEMFsER,IEEE

Abstract—The paper considers the problem of anarbitrary number of

thin, transverse, and metatlic strips Ioeated in the cross section of a

rectangular waveguide. The strips can either be inductive or capacitive and

are arb]tianly locat4. ~uivdence theorem isuti~ued, inconjunctiontiti

appropriate boundm conditions, to set UP an integmf equation which is
then solved using the method of moments. The method is applied to a

number of test problems and the numerical results show good agreement

with the available data.

I. INTRODUCTION

A PARTICULARLY important problem in electro-

magnetic theory is the analysis of obstacles and

discontinuities in a waveguide. Several methods of solution

have been developed and some of these may be found in

standard texts [1], [2]. Although the rigorous analytical

techniques give an insight into the finer points of the

phenomena involved, the working engineer is generally

interested only in the numerical results. Therefore, a recent

trend is to utilize numerical mode-matching and moment

methods, which has been made possible by the develop-

ment of powerful digital computers.

This paper considers the problem of a number of thin,

transverse, and metallic strips which are arbitrarily located

in the cross section of a rectangular waveguide. The related

problem of double apertures or double strips has been

analyzed by Lewin [2, chs. 6, 7] using the singular-integral

equation method. Chang and Khan [3] have used the

variational theory to study the problem of coupling be-

tween two inductive strips in a rectangular waveguide.

Recently, Auda and Barrington [4] have presented a mo-

ment procedure for the general problem of inductive ob-

stacles in a rectangular waveguide. In their method, each of

the posts is approximated by a finite number of current

carrying strips. The waveguide Green’s function is then

used to express the field produced by these currents. In

order to improve the convergence, they express the dy-

namic Green’s function in terms of the corresponding

static Green’s function and the resulting integrals are

evaluated numerically. Although the method can, in princi-

ple, be extended to include the capacitive obstacles, the

analytical and numerical problems in that case are ex-

pected to increase further because the obstacle is no longer

uniform in the direction of electric lines of force.
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In this paper, we present an alternative moment proce-

dure which is straightforward and can be applied to the

problem of multiple strip discontinuities in a rectangular

waveguide. The method is based upon the generalized

network formulation for aperture problems [5] and can

handle both the inductive and capacitive strips of arbitrary

number and width.

II. FORbiULATION

Fig. 1 shows the problem under study and defines the

coordinates and parameters used. Here, we consider p

perfectly conducting strips of widths WI, Wz,”” “, WPlocated

at the plane z = O. The strips are infinitesimally thin and

can be either inductive (Fig. l(a)) or capacitive (Fig. l(b)).

The waveguide is considered to be lossless and supports

only the dominant TEIO propagating mode. An electro-

magnetic source is assumed to be located in the region
Z< ().

As a first step, the equivalence theorem [1, sec. 1.7] is

utilized to divide the problem into two separate parts (Fig.

2). The apertures Al, A J,. , c, A ~ are closed with electric

conductors and an equivalent surface magnetic current

+ Z(X, y) is placed at z =0- in the region of apertures. It

is given by

G=.2XE (1)

where ~ is the electric field in the apertures of the original

problem and 2 is the unit normal. In order to ensure the

continuity of electric field at z = O, a current – ~(x, y) is

placed at z = O‘. The electromagnetic field in the region
z <0 (region 1) is now due to the impressed sources and

the current + fi at z = O- while in the region z >0

(region 2), it is due to the current – ~ at z = O+. In both

cases, the field is evaluated with the apertures short-cir-

cuited.
Enforcing the boundary condition that the transverse (to

z-axis) magnetic field is continuous across the apertures,

we obtain

E}l)(l-Z) + 2@” = F/2)( – m) on A (2)

where

(3)
t=l

and U denotes the union operator. In (2), the transverse

magnetic field produced in region 1 by the current + ~ is
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Fig. 1. Geometry of the problem: (a)

strips.

(a)

inductive strips, (b) capacitive

where ~ are the unknown complex coefficients.

Following the procedure outlined in [5], (4) can now be

reduced to matrix form

[Y]7=7’ (6)

where

[Y]= [(-~, Rt(q)]NxN
1= [(~., Rp)] ~xl

r= [l’j]Nxl.

(7)

(8)

(9)

Solution of the system of equations (6) determines the

equivalent magnetic current ~.

A. Evaluation of Matrix Elements ljj

The transverse components og the fields produced by a

single expansion function + Mj can be written in the

modal form as [1, sec. 5.6]

~=1

(10)

~=1

where K is the number of modes used to approximate the

fields, Cj, are the modal amplitudes, Z. are the normalized

modal vectors, y, are the modal propagation cOIIStZtntS,

and Y~ are the modal characteristic admittances.

Substituting (10) in (1) and making use of the ortho-

gonality of modal vectors, one can easily show that
-7

IL
+

MAGNETIC
CURRENT

-m
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Fig. 2. Equivalent problems: (a) model valid in the region z <O, (b)

model vslid in the region z >0.

denoted ~}1)(~), that produced in region 2 by – ~ is

denoted @2J( – ~), and the incident field due to the

impressed sources is denoted ~,hc.

Using the linearity of ~, operator and the fact that the

two regions are identical, (2) can be rewritten as

p,(j@+@=o onA. (4)

The operator equation (4) can be solved numerically

using the method of moments. More specifically, we define

a set of expansion functions {~, } and a set ~f testing

functions { Wi } in A and express the current M by the

superposition

(5)

An element of the matrix [Y] is now obtained in a

straightforward manner by combining (7) and (11) and is

given by

s-l

where the coefficients Bi~ are given by (12) with ~J re-

placed by ~i.

B. Evaluation of Excitation Vector ~

Assuming that only the dominant mode of unit ampli -

tude is incident at z = O, the transverse magnetic field in

the incident wave can be written as

where the subscript o denotes the dominant mode.

Substituting (14) in (8), an element of excitation vector iIs

obtained as

Ii= YOBiO. (15)

III. DETERMINATION OF THE EQUIVALENT CIRCUIT

From an engineering viewpoint, it is always desirable lo

characterize a discontinuity by an electrical network con-

taining lumped elements. The class of discontinuities con-j=l
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Fig. 3. The normalized susceptance of the symmetrical inductive di-
aphragm (a/A = 0.8).

Fig. 4. The normalized susceptance of the symmetrical inductive strip

(a/A = 0.8).

sidered here can be represented simply by a normalized

2. (,6, ]:m~

shunt susceptance j~ across a transmission line of unit

characteristic admittance. It is given by [1, sec. 8.2]

j~=–e

!,

where .0 is the reflection coefficient of

mode, evaluated at z = O, and is given by

the dominant

(17)

The junction can now be characterized by the scattering 2.0
L /

,/i

matrix

[

r. l+ro
s= 1l+ro r. -

(18)

-/,,,,,.

/
~ Present method
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/’ ----- Reference C31
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/
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IV. RESULTS AND DISCUSSION Fig. 5. The normalized susceptanceof the double inductive strip (a = 0.9

The method presented has been applied to a number of in, ~ = 0.4 in, w = 0.05in, f = 8.25GHz).

problems and the results compared with the available data.

A Galerkin procedure has been used with a rooftop func-

tion utilized for expansion as well as testing. Some of the It is seen that for the cases of inductive and capacitive

problems considered and the results obtained are shown in diaphragms and the symmetrical inductive strip, the results

Figs. 3–6. In all the cases, the moment procedure is found from the present method agree very well with the data

to converge monotonically as shown in Fig. 7 for a capaci- given in the FVaueguide Handbook (WGHB) [6]. However,

tive diaphragm. for the case of two coupled-inductive strips, the moment
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Fig. 6. The normalized susceptance of the symmetrical capacitive di-
aphragm (b/Ag = 0.2).
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Fig. 7. The convergence of the moment procedure for the symmetrical
capacitive diaphragm ( b/Ag = 0.2, d/b= 0.2).

procedure predicts slightly higher values of susceptance

than those calculated by Chang and Khan [3]. This is

because they assume the current to be constant over the

strip-width, which is not strictly true even for narrow

strips. As a matter of fact, the difference is found to be as

large as 20 percent when the strips are near the narrow

walls (large rate of change of electric field), and reduces to

about 9 percent when they are near the center of the

waveguide.

Some general remarks regarding the numerical proce-

dure are in order here.

In the case of inductive strips, the discontinuity is uni-

form along the y-axis, and since the electromagnetic energy
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Fig. 8. Condition number of the moment matrix as a function of
waveguide modes for a symmetrieaf inductive diaphragm (a/A = 0.8,
d/a = 0.5).

is incident in the dominant TEIO mode, only TEWO modes

are excited at z = O. Thus, the equivalent surface magnetic

current has only the x-component M’, which does not

vary with y. Consequently, it is the number ‘of sections

along the x-axis that affect the convergence of the solution

and, moreover, only TE~O modes need be included in the

summation of (13).

In the case of capacitive strips, on the’ other hamd, the

discontinuity is nonuniform along the y-axis. Therefore, a

number of subyctions must be used along the y-axis (Fig.

7) and both TE and TM modes must be included.

Further, the numerical solution to the matrix equation

(6) is found to exhibit the phenomenon of relative conver-

gence [7], [8]. Thus, the solution may converge to an

incorrect value if for a given number of expansion func-

tions, the number of modes used is less than a certain

critical value Kc. A convenient way to find the value of Kc

is to plot the condition number [9, sec. 5.1] of the moment

matrix as shown in Fig. 8. It is seen that for a given

number of expansion functions, the condition number set-

tles around a minimum value which is obtained at K = K=.

Thus, one should always choose K > Kc.
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